CSS selector simplifier regular expression in JavaScript

December 20, 2017
0 comments Web development, JavaScript

The Problem

I'm working on a project where it needs to evaluate CSS as a string. Basically, it compares CSS selectors against a DOM to see if the CSS selector is used in the DOM.

But CSS has pseudo classes. A common one a lot of people are familiar with is: a:hover { text-decoration: crazy }. So that :hover part is not relevant when evaluating the CSS selector against the DOM. So you chop off the :hover bit and is left with a which you can then look for in the DOM.

But there are some tricks and make this less trivial. Consider, this from Bootstrap 3


a[href^="#"]:after,
a[href^="javascript:"]:after {
    content: "";
}

In this case we can't simply split on a : character.

Another non-trivial example comes from Semantic UI:


.ui[class*="4:3"].embed {
  padding-bottom: 75%;
}
.ui[class*="16:9"].embed {
  padding-bottom: 56.25%;
}
.ui[class*="21:9"].embed {
  padding-bottom: 42.85714286%;
}

Basically, if you just split the selectors (e.g. a:hover) on the first : and keep everything to the left (e.g. a), with these non-trivial CSS selectors you'd get this:

a[href^="javascript

and

.ui[class*="4

etc. These CSS selectors will fail. Both Firefox and Chrome seem to swallow any errors but cheerio will raise a SyntaxError and not just that but the problem is that the CSS selector is just the wrong one to look for.

The Solution

The solution has to be to split by the : character when it's not between two quotation marks.

This Stackoverflow post helped me with the regex. It was trivial to extend now my final solution looks like this:


/**
 * Reduce a CSS selector to be without any pseudo class parts.
 * For example, from 'a:hover' return 'a'. And from 'input::-moz-focus-inner'
 * to 'input'.
 * Also, more advanced ones like 'a[href^="javascript:"]:after' to
 * 'a[href^="javascript:"]'.
 * The last example works too if the input was 'a[href^='javascript:']:after'
 * instead (using ' instead of ").
 *
 * @param {string} selector
 * @return {string}
 */
const reduceCSSSelector = selector => {
  return selector.split(
    /:(?=([^"'\\]*(\\.|["']([^"'\\]*\\.)*[^"'\\]*['"]))*[^"']*$)/g
  )[0]
}

Extra; About regexes

I've been coding for about 20 years and would like to think I know my way around writing regular expressions in various languages. However, I'm also eager to admit that I often fumble and rely on googling/stackoverflow more than actually understanding what the heck I'm doing. That's why I found this comment so amusing:

Thank you! Didn't think it was possible. I understand 100% of the theory, about 60% of the regex, and I'm down to 0% when it comes to writing it on my own. Oh, well, maybe one of these days. – Azmisov

Msgpack vs JSON (with gzip)

December 19, 2017
14 comments Python, Web development

tl;dr; I see no reason worth switching to Msgpack instead of good old JSON.

I was curious, how much more efficient is Msgpack at packing a bunch of data into a file I can emit from a web service.

In this experiment I take a massive JSON file that is used in a single-page-app I worked on. If I download the file locally as a .json file, the file is 2.1MB.

Converting it to Msgpack:


>>> import json, msgpack
>>> with open('events.json') as f:
...   events=json.load(f)
...
>>> len(events)
3
>>> events.keys()
dict_keys(['max_modified', 'events', 'urls'])
>>> with open('events.msgpack', 'wb') as f:
...   f.write(msgpack.packb(events))
...
1880266

events.json vs events.msgpack
Now, let's compared the two file formats, as seen on disk:

▶ ls -lh events*
-rw-r--r--  1 peterbe  wheel   2.1M Dec 19 10:16 events.json
-rw-r--r--  1 peterbe  wheel   1.8M Dec 19 10:19 events.msgpack

But! How well does it compress?

More common than not your web server can return content encoded in Gzip as content-encoding: gzip. So, let's compare that:

▶ gzip events.json ; gzip events.msgpack
▶ ls -l events*
-rw-r--r--  1 peterbe  wheel  304416 Dec 19 10:16 events.json.gz
-rw-r--r--  1 peterbe  wheel  305905 Dec 19 10:19 events.msgpack.gz

Msgpack vs JSON (with gzip)

Oh my! When you gzip the files the .json file ultimately becomes smaller. By a whopping 0.5%!

What about speed?

First let's open the files a bunch of times and see how long it takes to unpack:


def f1():
    with open('events.json') as f:
        s = f.read()
    t0 = time.time()
    events = json.loads(s)
    t1 = time.time()
    assert len(events['events']) == 4365
    return t1 - t0


def f2():
    with open('events.msgpack', 'rb') as f:
        s = f.read()
    t0 = time.time()
    events = msgpack.unpackb(s, encoding='utf-8')
    t1 = time.time()
    assert len(events['events']) == 4365
    return t1 - t0


def f3():
    with open('events.json') as f:
        s = f.read()
    t0 = time.time()
    events = ujson.loads(s)
    t1 = time.time()
    assert len(events['events']) == 4365
    return t1 - t0

(Note that the timing is around the json.loads() etc without measuring how long it takes to get the files to strings)

json.loads() vs msgpack.unpack() vs. ujson.loads()
Result (using Python 3.6.1): All about the same.

FUNCTION: f1 Used 56 times
    MEDIAN 30.509352684020996
    MEAN   31.09178798539298
    STDEV  3.5620914333233595
FUNCTION: f2 Used 68 times
    MEDIAN 27.882099151611328
    MEAN   28.704492484821994
    STDEV  3.353800228776872
FUNCTION: f3 Used 76 times
    MEDIAN 27.746915817260742
    MEAN   27.920340236864593
    STDEV  2.21554251130519

Same benchmark using PyPy 3.5.3, but skipping the f3() which uses ujson:

FUNCTION: f1 Used 99 times
    MEDIAN 20.905017852783203
    MEAN   22.13949386519615
    STDEV  5.142071370453135
FUNCTION: f2 Used 101 times
    MEDIAN 36.96393966674805
    MEAN   40.54664857316725
    STDEV  17.833577642246738

Dicussion and conclusion

One of the benefits of Msgpack is that it can used for streaming. "Streaming unpacking" as they call it. But, to be honest, I've never used it. That can useful when you have structured data trickling in and you don't want to wait for it all before using the data.

Another cool feature Msgpack has is ability to encode custom types. E.g. datetime.datetime. Like bson can do. With JSON you have to, for datetime objects do string conversions back and forth and the formats are never perfectly predictable so you kinda have to control both ends.

But beyond some feature differences, it seems that JSON compressed just as well as Msgpack when Gzipped. And unlike Msgpack JSON is not binary so it's easy to poke around with any tool. And decompressing JSON is just as fast. Almost. But if you need to squeeze out a couple of extra free milliseconds from your JSON files you can use ujson.

Conclusion; JSON is fine. It's bigger but if you're going to Gzip anyway, it's just as small as Msgpack.

Bonus! BSON

Another binary encoding format that supports custom types is BSON. This one is a pure Python implementation. BSON is used by MongoDB but this bson module is not what PyMongo uses.

Size comparison:

▶ ls -l events*son
-rw-r--r--  1 peterbe  wheel  2315798 Dec 19 11:07 events.bson
-rw-r--r--  1 peterbe  wheel  2171439 Dec 19 10:16 events.json

So it's 7% larger than JSON uncompressed.

▶ ls -l events*son.gz
-rw-r--r--  1 peterbe  wheel  341595 Dec 19 11:07 events.bson.gz
-rw-r--r--  1 peterbe  wheel  304416 Dec 19 10:16 events.json.gz

Meaning it's 12% fatter than JSON when Gzipped.

Doing a quick benchmark with this:


def f4():
    with open('events.bson', 'rb') as f:
        s = f.read()
    t0 = time.time()
    events = bson.loads(s)
    t1 = time.time()
    assert len(events['events']) == 4365
    return t1 - t0

Compared to the original f1() function:

FUNCTION: f1 Used 106 times
    MEDIAN 29.58393096923828
    MEAN   30.289863640407347
    STDEV  3.4766612593557173
FUNCTION: f4 Used 94 times
    MEDIAN 231.00042343139648
    MEAN   231.40889786659403
    STDEV  8.947746458066405

In other words, bson is about 600% slower than json.

This blog post was supposed to be about how well the individual formats size up against each other on disk but it certainly would be interesting to do a speed benchmark comparing Msgpack and JSON (and maybe BSON) where you have a bunch of datetimes or decimal.Decimal objects and see if the difference is favoring the binary formats.

Another win for Tracking Protection in Firefox

December 13, 2017
0 comments Web development, Mozilla

When I read Swedish news I usually open DN.se. At least I used to. Opening it used to feel like an "investment". It takes too long to load and it makes the browser all janky because of the weight of all ad videos and whatnot.

With Tracking Protection, which is built in to recent versions of Firefox, all of those load speed concerns goes away pretty much.

Without Tracking Protection

Without

  • 322 requests
  • 8.78MB transferred
  • 16.12s to finish fully loading

With Tracking Protection

With Tracking Protection

  • 67 requests
  • 1.15MB transferred
  • 8.42s to finish fully loading

I've blogged about this before but I'm just so excited I felt like repeating it. With Tracking Protection now enabled it actually feels fun to open heavy-on-ads news sites again. Perhaps even worth paying for.

How's My WiFi?

December 8, 2017
2 comments macOS, JavaScript, Node

This was one of those late-evening-after-the-kids-are-asleep project. Followed by some next-morning-sober-readme-fixes-and-npmjs-paperwork.

It's a little Node script that will open https://fast.com with puppeteer, and record, using document.querySelector('#speed-value') what my current Internet speed is according to that app. It currently only works on OSX but it should be easy to fix for someone handy on Linux or Windows.

You can either run it just once and get a readout. That's basically as useful as opening fast.com in a new browser tab.
The other way is to run it in a loop howsmywifi --loop and sit and watch as it tries to figure out what your Internet speed is after multiple measurements.

Screenshot

That's it!

The whole point of this was for me to get an understanding of what my Internet speed is and if I'm being screwed by Comcast. The measurements are very erratic and they might sporadically depend on channel noise on the WiFi or just packet crowding when other devices is overcrowding the pipes with heavy downloads such as video chatting or watching movies or whatever.

I've seen 98 Mbps with my iPhone on this network. Not so much today.

And Screenshots!

As a bonus, it will take a screenshot (if you pass the --screenshots flag) of the fast.com page each time it has successfully measured. Not sure what to do with this. If you have ideas, let me know.

Really simple Django view function timer decorator

December 8, 2017
2 comments Python, Django

I use this sometimes to get insight into how long some view functions take. Perhaps you find it useful too:


def view_function_timer(prefix='', writeto=print):

    def decorator(func):
        @functools.wraps(func)
        def inner(*args, **kwargs):
            try:
                t0 = time.time()
                return func(*args, **kwargs)
            finally:
                t1 = time.time()
                writeto(
                    'View Function',
                    '({})'.format(prefix) if prefix else '',
                    func.__name__,
                    args[1:],
                    'Took',
                    '{:.2f}ms'.format(1000 * (t1 - t0)),
                    args[0].build_absolute_uri(),
                )
        return inner

    return decorator

And to use it:


from wherever import view_function_timer


@view_function_timer()
def homepage(request, thing):
    ...
    return render(request, template, context)

And then it prints something like this:

View Function  homepage ('valueofthing',) Took 23.22ms http://localhost:8000/home/valueofthing

It's useful when you don't want a full-blown solution to measure all view functions with a middleware or something.
It can be useful also to see how a cache decorator might work:


from django.views.decorators.cache import cache_page
from wherever import view_function_timer


@view_function_timer('possibly cached')
@cache_page(60 * 60 * 2)  # two hours cache
@view_function_timer('not cached')
def homepage(request, thing):
    ...
    return render(request, template, context)

That way you can trace that, with tail -f or something, to see how/if the cacheing decorator works.

There are many better solutions that are more robust but might be a bigger investment. For example, I would recommend markus which, if you don't have a statsd server you can configure to logger.info call the timings.

Synonyms with elasticsearch-dsl

December 5, 2017
0 comments Python, Web development, PostgreSQL

The documentation about how to use synonyms in Elasticsearch is good but because it's such an advanced topic, even if you read the documentation carefully, you're still left with lots of questions. Let me show you some things I've learned about how to use synonyms in Python with elasticsearch-dsl.

What's the nature of your documents?

I'm originally from Sweden but moved to London, UK in 1999 and started blogging a few years after. So I wrote most of my English with British English spelling. E.g. "centre" instead of "center". Later I moved to California in the US and slowly started to change my own English over to American English. I kept blogging but now I would prefer to write "center" instead of "centre".

Another example... Certain technical words or namings are tricky. For example, is it "go" or is it "golang"? Is it "React" or is it "ReactJS"? Is it "PostgreSQL" or "Postgres". I never know. Not only is it sometimes hard to know which is right because people use them differently, but also sometimes "brands" like that change over time since inception, the creator might have preferred something but the masses of people call it something else.

So with all that in mind, not only has the nature of my documents (my blog post texts) changed in terminology over the years. My visitors are also coming both from British English and American English. Or, suppose that I knew the perfect way to phrase that relational database that starts with "Postg...". Even if my text is always spelled one particular way, perfectly, my visitors will most likely refer to it as "postgres" sometimes and "postgresql" sometimes.

The simple solution, match all!

Create a custom analyzer

Let's jump straight into the code. People who have used elasticsearch_dsl should be familiar with most of this:


from elasticsearch_dsl import (
    DocType,
    Text,
    Index,
    analyzer,
    Keyword,
    token_filter,
)
from django.conf import settings


index = Index(settings.ES_INDEX)
index.settings(**settings.ES_INDEX_SETTINGS)


synonym_tokenfilter = token_filter(
    'synonym_tokenfilter',
    'synonym',
    synonyms=[
        'reactjs, react',  # <-- important
    ],
)

text_analyzer = analyzer(
    'text_analyzer',
    tokenizer='standard',
    filter=[
        # The ORDER is important here.
        'standard',
        'lowercase',
        'stop',
        synonym_tokenfilter,
        # Note! 'snowball' comes after 'synonym_tokenfilter'
        'snowball',
    ],
    char_filter=['html_strip']
)

class BlogItemDoc(DocType):
    oid = Keyword(required=True)
    title = Text(
        required=True, 
        analyzer=text_analyzer
    )
    text = Text(analyzer=text_analyzer)

index.doc_type(BlogItemDoc)

This code above is copied from the "real code" but a lot of distracting things that aren't important to the point, have been removed.

The magic sauce here is that you create a token_filter and you can call it whatever you want. I called mine synonym_tokenfilter and that's also what the instance variable is called.

Notice the list of synonyms. It's a plain list of strings. Specifically, it's a list of 1 string reactjs, react.

Let's see how Elasticsearch analyzes this:
First with the text react.

$ curl -XGET 'http://127.0.0.1:9200/peterbecom/_analyze?analyzer=text_analyzer&text=react&pretty=1'
{
  "tokens" : [
    {
      "token" : "react",
      "start_offset" : 0,
      "end_offset" : 5,
      "type" : "<ALPHANUM>",
      "position" : 0
    },
    {
      "token" : "reactj",
      "start_offset" : 0,
      "end_offset" : 5,
      "type" : "SYNONYM",
      "position" : 0
    }
  ]
}

Note that the analyzer snowball, converted reactjs to reactj which is wrong in a sense, because there's not plural "reacts", but it ultimately doesn't matter much. At least not in this particular case.

Secondly, analyze it with the text reactjs:

$ curl -XGET 'http://127.0.0.1:9200/peterbecom/_analyze?analyzer=text_analyzer&text=reactjs&pretty=1'
{
  "tokens" : [
    {
      "token" : "reactj",
      "start_offset" : 0,
      "end_offset" : 7,
      "type" : "<ALPHANUM>",
      "position" : 0
    },
    {
      "token" : "react",
      "start_offset" : 0,
      "end_offset" : 7,
      "type" : "SYNONYM",
      "position" : 0
    }
  ]
}

Same tokens! Just different order.

Test it for reals

Now, the real proof is in actually doing a search on this. Look at these two screenshots:

Search for 'react'

Search for 'reactjs'

It worked! Different ways of phrasing your search but ultimately found all the documents that matched independent of different people or different authors might prefer to spell it.

Try it for yourself:

What it looked like before

Check out these two screenshots of how it would look like before, when synonyms for postgres and postgresql had not been set up yet:

Searching for 'postgresql'

Searching for 'postgres'

One immediate thought I have is what a mess I've been in blogging about that database. Clearly I struggled to pick one way to spell it consistently.

And here's what it would look like once that synonym has been set up:

Synonym set up for 'postgres' and 'postgresql'

"go" versus "golang"

Go is a programming language. That term, too, struggles with a name ambiguity. Granted, I rarely hear people say "golang", but it's definitely a written word that turns up a lot.

The problem with setting up a synonym for go == golang is that "go" is common English word. It's also the stem of the word "going" and such. So if you set up a synonym, like I did for react and reactjs above, this is what happens:

Search for 'golang'

This is now the exact search results as if I had searched for go. But look what it matched! It matched "Go" (good) but also "Going real simple..." (bad) and "...I should go" (bad).

If someone searches for the simple term "go" they probably intend to search for the Go programming language. All that snowball stemming is critical for a bunch of other non-computer-term searches so we can't remove the stemming.

The solution is to use what's called "Simple Contraction". And it looks like this:


all_synonyms = [
    'go => golang',
    'react => reactjs',
    'postgres => postgresql',
]

That basically means that a search for go is a search for golang. And a document that uses the word go (alone) is indexed as golang.

What happens is that the word go gets converted to golang which doesn't get stemming converted down to any other forms.

However, this is no silver bullet. Any search for the term go is ultimately a search for the word golang and the regular English word go. So the benefit of all of this was that we got rid of search results matching on going and gone.

What you have to decide...

The case for go is similar to the case for react. Both of these words are nouns but they're also verbs.

Should people find "reacting to events" when they search for "react"? If so, use react, reactjs in the synonyms list.

Should people only find documents related to noun "React" when they search for "event handing in react"? If so, use react => reactjs in the synonyms list.

It's up to you and your documents and what your users tend to search for.

Bonus! For American vs British English

AVKO.org publishes a list of all British to American English synonyms. You can download the whole list here. Unfortunately I can't find a license for this file but the compiled synonyms file is part of this repo which is licensed under MIT.

I download this list and keep it in the repo. Then when setting up the analyzer and token filters I load it in like this:


synonyms_root = os.path.join(
    settings.BASE_DIR, 'peterbecom/es-synonyms'
)
american_british_syns_fn = os.path.join(
    synonyms_root, 'be-ae.synonyms'
)

with open(american_british_syns_fn) as f:
    for line in f:
        if (
            '=>' not in line or 
             line.strip().startswith('#')
         ):
            continue
        all_synonyms.append(line.strip())

Now I can finally enjoy not having to worry about the fact that sometimes I spell it "license" and sometimes I spell it "licence". It's all the same now. Brits and Americans, rejoice on common ground!

Bonus! For terrible spellers

Although I don't have a big problem with this on my techy blog but you can use the Simple Contraction technique to list unambiguously bad spelling. Add dont => don't to the list of synonyms and a search for dont is a search for don't.

Last but not least, the official Elasticsearch documentation is the place to go. This blog post hopefully phrases it in more approachable terms. Especially for Python peeps.

Unzip benchmark on AWS EC2 c3.large vs c4.large

November 29, 2017
18 comments Python, Linux, Mozilla, Go

Datadog monitoring of time to dump and extract zip files in staging server
This web app I'm working on gets a blob of bytes from a HTTP POST. The nature of the blob is a 100MB to 1,100MB blob of a zip file. What my app currently does is that it takes this byte buffer, uses Python's built in zipfile to extract all its content to a temporary directory. A second function then loops over the files within this extracted tree and processes each file in multiple threads with concurrent.futures.ThreadPoolExecutor. Here's the core function itself:


@metrics.timer_decorator('upload_dump_and_extract')
def dump_and_extract(root_dir, file_buffer):
    zf = zipfile.ZipFile(file_buffer)
    zf.extractall(root_dir)

So far so good.

Speed Speed Speed

I quickly noticed that this is amounting to quite a lot of time spent doing the unzip and the writing to disk. What to do????

At first I thought I'd shell out to good old unzip. E.g. unzip -d /tmp/tempdirextract /tmp/input.zip but that has two flaws:

1) I'd first have to dump the blob of bytes to disk and do the overhead of shelling out (i.e. Python subprocess)
2) It's actually not faster. Did some experimenting and got the same results at Alex Martelli in this Stackoverflow post

Compute EC2 instance types
What about disk speed? Yeah, this is likely to be a part of the total time. The servers that run the symbols.mozilla.org service runs on AWS EC2 c4.large. This only has EBS (Elastic Block Storage). However, AWS EC2 c3.large looks interesting since it's using SSD disks. That's probably a lot faster. Right?

Note! For context, the kind of .zip files I'm dealing with contain many small files and often 1-2 really large ones.

EC2s Benchmarking

I create two EC2 nodes to experiment on. One c3.large and one c4.large. Both running Ubuntu 16.04.

Next, I have this little benchmarking script which loops over a directory full of .zip files between 200MB-600MB large. Roughly 10 of them. It then loads each one, one at a time, into memory and calls the dump_and_extract. Let's run it on each EC2 instance:

On c4.large

c4.large$ python3 fastest-dumper.py /tmp/massive-symbol-zips
138.2MB/s            291.1MB              2.107s
146.8MB/s            314.5MB              2.142s
144.8MB/s            288.2MB              1.990s
84.5MB/s             532.4MB              6.302s
146.6MB/s            314.2MB              2.144s
136.5MB/s            270.7MB              1.984s
85.9MB/s             518.9MB              6.041s
145.2MB/s            306.8MB              2.113s
127.8MB/s            138.7MB              1.085s
107.3MB/s            454.8MB              4.239s
141.6MB/s            251.2MB              1.774s


Average speed: 127.7MB/s
Median speed:  138.2MB/s

Average files created:       165
Average directories created: 129

On c3.large

c3.large$ python3 fastest-dumper.py -t /mnt/extracthere /tmp/massive-symbol-zips
105.4MB/s            290.9MB              2.761s
98.1MB/s             518.5MB              5.287s
108.1MB/s            251.2MB              2.324s
112.5MB/s            294.3MB              2.615s
113.7MB/s            314.5MB              2.767s
106.3MB/s            291.5MB              2.742s
104.8MB/s            291.1MB              2.778s
114.6MB/s            248.3MB              2.166s
114.2MB/s            248.2MB              2.173s
105.6MB/s            298.1MB              2.823s
106.2MB/s            297.6MB              2.801s
98.6MB/s             521.4MB              5.289s


Average speed: 107.3MB/s
Median speed:  106.3MB/s

Average files created:       165
Average directories created: 127

What the heck!? The SSD based instance is 23% slower!

I ran it a bunch of times and the average and median numbers are steady. c4.large is faster than c3.large at unzipping large blobs to disk. So much for that SSD!

Something Weird Is Going On

It's highly likely that the unzipping work is CPU bound and that most of those, for example, 5 seconds is spent unzipping and only a small margin is the time it takes to write to disk.

If the unzipping CPU work is the dominant "time consumer" why is there a difference at all?!

Or, is the "compute power" the difference between c3 and c4 and disk writes immaterial?

For the record, this test clearly demonstrates that the locally mounted SSD drive is 600% faster than ESB.

c3.large$ dd if=/dev/zero of=/tmp/1gbtest bs=16k count=65536
65536+0 records in
65536+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 16.093 s, 66.7 MB/s
c3.large$ sudo dd if=/dev/zero of=/mnt/1gbtest bs=16k count=65536
65536+0 records in
65536+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 2.62728 s, 409 MB/s

Let's try again. But instead of using c4.large and c3.large, let's use the beefier c4.4xlarge and c3.4xlarge. Both have 16 vCPUs.

c4.4xlarge

c4.4xlarge$ python3 fastest-dumper.py /tmp/massive-symbol-zips
130.6MB/s            553.6MB              4.238s
149.2MB/s            297.0MB              1.991s
129.1MB/s            529.8MB              4.103s
116.8MB/s            407.1MB              3.486s
147.3MB/s            306.1MB              2.077s
151.9MB/s            248.2MB              1.634s
140.8MB/s            292.3MB              2.076s
146.8MB/s            288.0MB              1.961s
142.2MB/s            321.0MB              2.257s


Average speed: 139.4MB/s
Median speed:  142.2MB/s

Average files created:       148
Average directories created: 117

c3.4xlarge

c3.4xlarge$ python3 fastest-dumper.py -t /mnt/extracthere /tmp/massive-symbol-zips
95.1MB/s             502.4MB              5.285s
104.1MB/s            303.5MB              2.916s
115.5MB/s            313.9MB              2.718s
105.5MB/s            517.4MB              4.904s
114.1MB/s            288.1MB              2.526s
103.3MB/s            555.9MB              5.383s
114.0MB/s            288.0MB              2.526s
109.2MB/s            251.2MB              2.300s
108.0MB/s            291.0MB              2.693s


Average speed: 107.6MB/s
Median speed:  108.0MB/s

Average files created:       150
Average directories created: 119

What's going on!? The time it takes to unzip and write to disk is, on average, the same for c3.large as c3.4xlarge!

Is Go Any Faster?

I need a break. As mentioned above, the unzip command line program is not any better than doing it in Python. But Go is faster right? Right?

Please first accept that I'm not a Go programmer even though I can use it to build stuff but really my experience level is quite shallow.

Here's the Go version. Critical function that does the unzipping and extraction to disk here:


func DumpAndExtract(dest string, buffer []byte, name string) {
    size := int64(len(buffer))
    zipReader, err := zip.NewReader(bytes.NewReader(buffer), size)
    if err != nil {
        log.Fatal(err)
    }
    for _, f := range zipReader.File {
        rc, err := f.Open()
        if err != nil {
            log.Fatal(err)
        }
        defer rc.Close()
        fpath := filepath.Join(dest, f.Name)
        if f.FileInfo().IsDir() {
            os.MkdirAll(fpath, os.ModePerm)
        } else {
            // Make File
            var fdir string
            if lastIndex := strings.LastIndex(fpath, string(os.PathSeparator)); lastIndex > -1 {
                fdir = fpath[:lastIndex]
            }
            err = os.MkdirAll(fdir, os.ModePerm)
            if err != nil {
                log.Fatal(err)
            }
            f, err := os.OpenFile(
                fpath, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, f.Mode())
            if err != nil {
                log.Fatal(err)
            }
            defer f.Close()

            _, err = io.Copy(f, rc)
            if err != nil {
                log.Fatal(err)
            }
        }
    }
}

And the measurement is done like this:


size := int64(len(content))
t0 := time.Now()
DumpAndExtract(tmpdir, content, filename)
t1 := time.Now()
speed := float64(size) / t1.Sub(t0).Seconds()

It's not as sophisticated (since it's only able to use /tmp) but let's just run it see how it compares to Python:

c4.4xlarge$ mkdir ~/GO
c4.4xlarge$ export GOPATH=~/GO
c4.4xlarge$ go get github.com/pyk/byten
c4.4xlarge$ go build unzips.go
c4.4xlarge$ ./unzips /tmp/massive-symbol-zips
56MB/s         407MB          7.27804954
74MB/s         321MB          4.311504933
75MB/s         288MB          3.856798853
75MB/s         292MB          3.90972474
81MB/s         248MB          3.052652168
58MB/s         530MB          9.065985117
59MB/s         554MB          9.35237202
75MB/s         297MB          3.943132388
74MB/s         306MB          4.147176578

Average speed:    70MB/s
Median speed:     81MB/s

So... Go is, on average, 40% slower than Python in this scenario. Did not expect that.

In Conclusion

No conclusion. Only confusion.

I thought this would be a lot clearer and more obvious. Yeah, I know it's crazy to measure two things at the same time (unzip and disk write) but the whole thing started with a very realistic problem that I'm trying to solve. The ultimate question was; will the performance benefit from us moving the web servers from AWS EC2 c4.large to c3.large and I think the answer is no.

UPDATE (Nov 30, 2017)

Here's a horrible hack that causes the extraction to always go to /dev/null:


class DevNullZipFile(zipfile.ZipFile):
    def _extract_member(self, member, targetpath, pwd):
        # member.is_dir() only works in Python 3.6
        if member.filename[-1] == '/':
            return targetpath
        dest = '/dev/null'
        with self.open(member, pwd=pwd) as source, open(dest, "wb") as target:
            shutil.copyfileobj(source, target)
        return targetpath


def dump_and_extract(root_dir, file_buffer, klass):
    zf = klass(file_buffer)
    zf.extractall(root_dir)

And here's the outcome of running that:

c4.4xlarge$ python3 fastest-dumper.py --dev-null /tmp/massive-symbol-zips
170.1MB/s            297.0MB              1.746s
168.6MB/s            306.1MB              1.815s
147.1MB/s            553.6MB              3.765s
132.1MB/s            407.1MB              3.083s
145.6MB/s            529.8MB              3.639s
175.4MB/s            248.2MB              1.415s
163.3MB/s            321.0MB              1.965s
162.1MB/s            292.3MB              1.803s
168.5MB/s            288.0MB              1.709s


Average speed: 159.2MB/s
Median speed:  163.3MB/s

Average files created:       0
Average directories created: 0

I ran it a few times to make sure the numbers are stable. They are. This is on the c4.4xlarge.

So, the improvement of writing to /dev/null instead of the ESB /tmp is 15%. Kinda goes to show how much of the total time is spent reading the ZipInfo file object.

For the record, the same comparison on the c3.4xlarge was 30% improvement when using /dev/null.

Also for the record, if I replace that line shutil.copyfileobj(source, target) above with pass, the average speed goes from 159.2MB/s to 112.8GB/s but that's not a real value of any kind.

UPDATE (Nov 30, 2017)

Here's the same benchmark using c5.4xlarge instead. So, still EBS but...
"3.0 GHz Intel Xeon Platinum processors with new Intel Advanced Vector Extension 512 (AVX-512) instruction set"

Let's run it on this supposedly faster CPU:

c5.4xlarge$ python3 fastest-dumper.py /tmp/massive-symbol-zips
165.6MB/s            314.6MB              1.900s
163.3MB/s            287.7MB              1.762s
155.2MB/s            278.6MB              1.795s
140.9MB/s            513.2MB              3.643s
137.4MB/s            556.9MB              4.052s
134.6MB/s            531.0MB              3.946s
165.7MB/s            314.2MB              1.897s
158.1MB/s            301.5MB              1.907s
151.6MB/s            253.8MB              1.674s
146.9MB/s            502.7MB              3.422s
163.7MB/s            288.0MB              1.759s


Average speed: 153.0MB/s
Median speed:  155.2MB/s

Average files created:       150
Average directories created: 119

So that is, on average, 10% faster than c4.4xlarge.

Is it 10% more expensive? For a 1-year reserved instance, it's $0.796 versus $0.68 respectively. I.e. 15% more expensive. In other words, in this context it's 15% more $$$ for 10% more processing power.

UPDATE (Jan 24, 2018)

I can almost not believe it!

Thanks you Oliver who discovered (see comment below) a blaring mistake in my last conclusion. The for reserved instances (which is what we use on my Mozilla production servers) the c5.4xlarge is actually cheaper than c4.4xlarge. What?!

In my previous update I compared c4.4xlarge and c5.4xlarge and concluded that c5.4xlarge is 10% faster but 15% more expensive. That actually made sense. Fancier servers, more $$$. But it's not like that in the real world. See for yourself:

c4.4xlarge
c4.4xlarge

c5.4xlarge
c5.4xlarge

How to create-react-app with Docker

November 17, 2017
31 comments Linux, Web development, JavaScript, React, Docker

Why would you want to use Docker to do React app work? Isn't Docker for server-side stuff like Python and Golang etc? No, all the benefits of Docker apply to JavaScript client-side work too.

So there are three main things you want to do with create-react-app; dev server, running tests and creating build artifacts. Let's look at all three but using Docker.

Create-react-app first

If you haven't already, install create-react-app globally:

▶ yarn global add create-react-app

And, once installed, create a new project:

▶ create-react-app docker-create-react-app
...lots of output...

▶ cd docker-create-react-app
▶ ls
README.md    node_modules package.json public       src          yarn.lock

We won't need the node_modules here in the project directory. Instead, when building the image we're going let node_modules stay inside the image. So you can go ahead and... rm -fr node_modules.

Create the Dockerfile

Let's just dive in. This Dockerfile is the minimum:

FROM node:8

ADD yarn.lock /yarn.lock
ADD package.json /package.json

ENV NODE_PATH=/node_modules
ENV PATH=$PATH:/node_modules/.bin
RUN yarn

WORKDIR /app
ADD . /app

EXPOSE 3000
EXPOSE 35729

ENTRYPOINT ["/bin/bash", "/app/run.sh"]
CMD ["start"]

A couple of things to notice here.
First of all we're basing this on the official Node v8 repository on Docker Hub. That gives you a Node and Yarn by default.

Note how the NODE_PATH environment variable puts the node_modules in the root of the container. That's so that it doesn't get added in "here" (i.e. the current working directory). If you didn't do this, the node_modules directory would be part of the mounted volume which not only slows down Docker (since there are so many files) it also isn't necessary to see those files.

Note how the ENTRYPOINT points to run.sh. That's a file we need to create too, alongside the Dockerfile file.

#!/usr/bin/env bash
set -eo pipefail

case $1 in
  start)
    # The '| cat' is to trick Node that this is an non-TTY terminal
    # then react-scripts won't clear the console.
    yarn start | cat
    ;;
  build)
    yarn build
    ;;
  test)
    yarn test $@
    ;;
  *)
    exec "$@"
    ;;
esac

Lastly, as a point of convenience, note that the default CMD is "start". That's so that when you simply run the container the default thing it does is to run yarn start.

Build container

Now let's build it:

▶ docker image build -t react:app .

The -t react:app is up to you. It doesn't matter so much what it is unless you're going to upload your container the a registry. Then you probably want the repository to be something unique.

Let's check that the build is there:

▶ docker image ls react:app
REPOSITORY          TAG                 IMAGE ID            CREATED             SIZE
react               app                 3ee5c7596f57        13 minutes ago      996MB

996MB! The base Node image is about ~700MB and the node_modules directory (for a clean new create-react-app) is ~160MB (at the time of writing). What the remaining difference is, I'm not sure. But it's empty calories and easy to lose. When you blow away the built image (docker image rmi react:app) your hard drive gets all that back and no actual code is lost.

Before we run it, lets go inside and see what was created:

▶ docker container run -it react:app bash
root@996e708a30c4:/app# ls
Dockerfile  README.md  package.json  public  run.sh  src  yarn.lock
root@996e708a30c4:/app# du -sh /node_modules/
148M    /node_modules/
root@996e708a30c4:/app# sw-precache
Total precache size is about 355 kB for 14 resources.
service-worker.js has been generated with the service worker contents.

The last command (sw-precache) was just to show that executables in /node_modules/.bin are indeed on the $PATH and can be run.

Run container

Now to run it:

▶ docker container run -it -p 3000:3000 react:app
yarn run v1.3.2
$ react-scripts start
Starting the development server...

Compiled successfully!

You can now view docker-create-react-app in the browser.

  Local:            http://localhost:3000/
  On Your Network:  http://172.17.0.2:3000/

Note that the development build is not optimized.
To create a production build, use yarn build.

Default app running

Pretty good. Open http://localhost:3000 in your browser and you should see the default create-react-app app.

Next step; Warm reloading

create-react-app does not support hot reloading of components. But it does support web page reloading. As soon as a local file is changed, it sends a signal to the browser (using WebSockets) to tell it to... document.location.reload().

To make this work, we need to do two things:
1) Mount the current working directory into the Docker container
2) Expose the WebSocket port

The WebSocket thing is set up by exposing port 35729 to the host (-p 35729:35729).

Below is an example running this with a volume mount and both ports exposed.

▶ docker container run -it -p 3000:3000 -p 35729:35729 -v $(pwd):/app react:app
yarn run v1.3.2
$ react-scripts start
Starting the development server...

Compiled successfully!

You can now view docker-create-react-app in the browser.

  Local:            http://localhost:3000/
  On Your Network:  http://172.17.0.2:3000/

Note that the development build is not optimized.
To create a production build, use yarn build.

Compiling...
Compiled successfully!
Compiling...
Compiled with warnings.

./src/App.js
  Line 7:  'neverused' is assigned a value but never used  no-unused-vars

Search for the keywords to learn more about each warning.
To ignore, add // eslint-disable-next-line to the line before.

Compiling...
Failed to compile.

./src/App.js
Module not found: Can't resolve './Apps.css' in '/app/src'

In the about example output. First I make a harmless save in the src/App.js file just to see that the dev server notices and that my browser reloads when I did that. That's where it says

Compiling...
Compiled successfully!

Secondly, I make an edit that triggers a warning. That's where it says:

Compiling...
Compiled with warnings.

./src/App.js
  Line 7:  'neverused' is assigned a value but never used  no-unused-vars

Search for the keywords to learn more about each warning.
To ignore, add // eslint-disable-next-line to the line before.

And lastly I make an edit by messing with the import line

Compiling...
Failed to compile.

./src/App.js
Module not found: Can't resolve './Apps.css' in '/app/src'

This is great! Isn't create-react-app wonderful?

Build build :)

There are many things you can do with the code you're building. Let's pretend that the intention is to build a single-page-app and then take the static assets (including the index.html) and upload them to a public CDN or something. To do that we need to generate the build directory.

The trick here is to run this with a volume mount so that when it creates /app/build (from the perspective) of the container, that directory effectively becomes visible in the host.

▶ docker container run -it -v $(pwd):/app react:app build
yarn run v1.3.2
$ react-scripts build
Creating an optimized production build...
Compiled successfully.

File sizes after gzip:

  35.59 KB  build/static/js/main.591fd843.js
  299 B     build/static/css/main.c17080f1.css

The project was built assuming it is hosted at the server root.
To override this, specify the homepage in your package.json.
For example, add this to build it for GitHub Pages:

  "homepage" : "http://myname.github.io/myapp",

The build folder is ready to be deployed.
You may serve it with a static server:

  yarn global add serve
  serve -s build

Done in 5.95s.

Now, on the host:

▶ tree build
build
├── asset-manifest.json
├── favicon.ico
├── index.html
├── manifest.json
├── service-worker.js
└── static
    ├── css
    │   ├── main.c17080f1.css
    │   └── main.c17080f1.css.map
    ├── js
    │   ├── main.591fd843.js
    │   └── main.591fd843.js.map
    └── media
        └── logo.5d5d9eef.svg

4 directories, 10 files

The contents of that file you can now upload to a CDN some public Nginx server that points to this as the root directory.

Running tests

This one is so easy and obvious now.

▶ docker container run -it -v $(pwd):/app react:app test

Note the that we're setting up a volume mount here again. Since the test runner is interactive it sits and waits for file changes and re-runs tests immediately, it's important to do the mount now.

All regular jest options work too. For example:

▶ docker container run -it -v $(pwd):/app react:app test --coverage
▶ docker container run -it -v $(pwd):/app react:app test --help

Debugging the node_modules

First of all, when I say "debugging the node_modules", in this context, I'm referring to messing with node_modules whilst running tests or running the dev server.

One way to debug the node_modules used is to enter a bash shell and literally mess with the files inside it. First, start the dev server (or start the test runner) and give the container a name:

▶ docker container run -it -p 3000:3000 -p 35729:35729 -v $(pwd):/app --name mydebugging react:app

Now, in a separate terminal start bash in the container:

▶ docker exec -it mydebugging bash

Once you're in you can install an editor and start editing files:

root@2bf8c877f788:/app# apt-get update && apt-get install jed
root@2bf8c877f788:/app# jed /node_modules/react/index.js

As soon as you make changes to any of the files, the dev server should notice and reload.

When you stop the container all your changes will be reset. So if you had to sprinkle the node_modules with console.log('WHAT THE HECK!') all of those disappear when the container is stopped.

NodeJS shell

This'll come as no surprise by now. You basically run bash and you're there:

▶ docker container run -it -v $(pwd):/app react:app bash
root@2a21e8206a1f:/app# node
> [] + 1
'1'

Conclusion

When I look back at all the commands above, I can definitely see how it's pretty intimidating and daunting. So many things to remember and it's got that nasty feeling where you feel like your controlling your development environment through unwieldy levers rather than your own hands.

But think of the fundamental advantages too! It's all encapsulated now. What you're working on will be based on the exact same version of everything as your teammate, your dev server and your production server are using.

Pros:

  • All packaged up and all team members get the exact same versions of everything, including Node and Yarn.
  • The node_modules directory gets out of your hair.
  • Perhaps some React code is just a small part of a large project. E.g. the frontend is React, the backend is Django. Then with some docker-compose magic you can have it all running with one command without needing to run the frontend in a separate terminal.

Cons:

  • Lack of color output in terminal.
  • The initial (or infrequent) wait for building the docker image is brutal on a slow network.
  • Lots of commands to remember. For example, How do you start a shell again?

In my (Mozilla Services) work, the projects I work on, I actually use docker-compose for all things. And I have a Makefile to help me remember all the various docker-compose commands (thanks Jannis & Will!). One definitely neat thing you can do with docker-compose is start multiple containers. Then you can, with one command, start a Django server and the create-react-app dev server with one command. Perhaps a blog post for another day.

Yet another Docker 'A ha!' moment

November 5, 2017
2 comments macOS, Docker

tl;dr; To build once and run Docker containers with different files use a volume mount. If that's not an option, like in CircleCI, avoid volume mount and rely on container build every time.

What the heck is a volume mount anyway?

Laugh all you like but after almost year of using Docker I'm still learning the basics. Apparently. This, now, feels laughable but there's a small chance someone else stumbles like I did and they might appreciate this.

If you have a volume mounted for a service in your docker-compose.yml it will basically take whatever you mount and lay that on top of what was in the Docker container. Doing a volume mount into the same working directory as your container is totally common. When you do that the files on the host (the files/directories mounted) get used between each run. If you don't do that, you're stuck with the files, from your host, from the last time you built.

Consider...:

# Dockerfile
FROM python:3.6-slim
LABEL maintainer="mail@peterbe.com"
COPY . /app
WORKDIR /app
CMD ["python", "run.py"]

and...:


#!/usr/bin/env python
if __name__ == '__main__':
    print("hello!")

Let's build it:

$ docker image build -t test:latest .
Sending build context to Docker daemon   5.12kB
Step 1/5 : FROM python:3.6-slim
 ---> 0f1dc0ba8e7b
Step 2/5 : LABEL maintainer "mail@peterbe.com"
 ---> Using cache
 ---> 70cf25f7396c
Step 3/5 : COPY . /app
 ---> 2e95935cbd52
Step 4/5 : WORKDIR /app
 ---> bc5be932c905
Removing intermediate container a66e27ecaab3
Step 5/5 : CMD python run.py
 ---> Running in d0cf9c546fee
 ---> ad930ce66a45
Removing intermediate container d0cf9c546fee
Successfully built ad930ce66a45
Successfully tagged test:latest

And run it:

$ docker container run test:latest
hello!

So basically my little run.py got copied into the container by the Dockerfile. Let's change the file:

$ sed -i.bak s/hello/allo/g run.py
$ python run.py
allo!

But it won't run like that if we run the container again:

$ docker container run test:latest
hello!

So, the container is now built based on a Python file from back of the time the container was built. Two options:

1) Rebuild, or
2) Volume mount in the host directory

This is it! That this is your choice.

Rebuild might take time. So, let's mount the current directory from the host:

$ docker container run -v `pwd`:/app test:latest
allo!

So yay! Now it runs the container with the latest file from my host directory.

The dark side of volume mounts

So, if it's more convenient to "refresh the files in the container" with a volume mount instead of container rebuild, why not always do it for everything?

For one thing, there might be files built inside the container that cease to be visible if you override that workspace with your own volume mount.

The other crucial thing I learned the hard way (seems to obvious now!) is that there isn't always a host directory to mount. In particular, in tecken we use a base ubuntu image and in the run parts of the CircleCI configuration we were using docker-compose run ... with directives (in the docker-compose.yml file) that uses volume mounts. So, the rather cryptic effect was that the files mounted into the container was not the files checked out from the git branch.

The resolution in this case, was to be explicit when running Docker commands in CircleCI to only do build followed by run without a volume mount. In particular, to us it meant changing from docker-compose run frontend lint to docker-compose run frontend-ci lint. Basically, it's a separate directive in the docker-compose.yml file that is exclusive to CI.

In conclusion

I feel dumb for not seeing this clearly before.

The mistake that triggered me was that when I ran docker-compose run test test (first test is the docker compose directive, the second test is the of the script sent to CMD) it didn't change the outputs when I edit the files in my editor. Adding a volume mount to that directive solved it for me locally on my laptop but didn't work in CircleCI for reasons (I can't remember how it errored).

So now we have this:

# In docker-compose.yml

  frontend:
    build:
      context: .
      dockerfile: Dockerfile.frontend
    environment:
      - NODE_ENV=development
    ports:
      - "3000:3000"
      - "35729:35729"
    volumes:
      - $PWD/frontend:/app
    command: start

  # Same as 'frontend' but no volumes or command
  frontend-ci:
    build:
      context: .
      dockerfile: Dockerfile.frontend

How to use django-cache-memoize

November 3, 2017
0 comments Python, Django

Last week I released django-memoize-function which is a library for Django developers to more conveniently use caching in function calls. This is a quick blog post to demonstrate that with an example.

The verbose traditional way to do it

Suppose you have a view function that takes in a request and returns a HttpResponse. Within, it does some expensive calculation that you know could be cached. Something like this:

No caching


def blog_post(request, slug):
    post = BlogPost.objects.get(slug=slug)

    related_posts = BlogPost.objects.exclude(
        id=post.id
    ).filter(
        # BlogPost.keywords is an ArrayField
        keywords__overlap=post.keywords
    ).order_by('-publish_date')

    context = {
        'post': post,
        'related_posts': related_posts,
    }
    return render(request, 'blogpost.html', context)

So far so good. Perhaps you know that lookup of related posts is slowish and can be cached for at least one hour. So you add this:

Caching


from django.core.cache import cache

def blog_post(request, slug):
    post = BlogPost.objects.get(slug=slug)

    cache_key = b'related_posts:{}'.format(post.id)
    related_posts = cache.get(cache_key)
    if related_posts is None:  # was not cached
        related_posts = BlogPost.objects.exclude(
            id=post.id
        ).filter(
            # BlogPost.keywords is an ArrayField
            keywords__overlap=post.keywords
        ).order_by('-publish_date')
        cache.set(cache_key, related_posts, 60 * 60)

    context = {
        'post': post,
        'related_posts': related_posts,
    }
    return render(request, 'blogpost.html', context)

Great progress. But now you want that cache to immediate reset as soon as the blog posts change.


@login_required
def update_blog_post(request, slug):
    post = BlogPost.objects.get(slug=slug)
    if request.method == 'POST':
        # BlogPostForm is a forms.ModelForm class for BlogPost
        form = BlogPostForm(request.POST, instance=post)
        if form.is_valid():
            form.save()
            cache_key = b'related_posts:{}'.format(post.id)
            cache.delete(cache_key)
            return redirect(reverse('blog_post', args=(post.id,))
    else:
        form = BlogPostForm(instance=post)

    context = {
        'post': post,
        'form': form,
    }
    return render(request, 'edit_blogpost.html', context)

Awesome. Now the cache is cleared as soon as the BlogPost is updated.

Problem; you have repeated the code generating the cache key in two places.

Use django-cache-memoize

First extract out the getting of related posts into its own function and then decorate it.


from cache_memoize import cache_memoize

@cache_memoize(60 * 60)
def get_related_posts(id):
    return BlogPost.objects.exclude(
        id=post.id
    ).filter(
        # BlogPost.keywords is an ArrayField
        keywords__overlap=post.keywords
    ).order_by('-publish_date')


def blog_post(request, slug):
    post = BlogPost.objects.get(slug=slug)

    related_posts = get_related_posts(post.id)

    context = {
        'post': post,
        'related_posts': related_posts,
    }
    return render(request, 'blogpost.html', context) 

Now, to do the cache invalidation you need to call that function get_related_posts one more time:


def update_blog_post(request, slug):
    post = BlogPost.objects.get(slug=slug)
    if request.method == 'POST':
        # BlogPostForm is a forms.ModelForm class for BlogPost
        form = BlogPostForm(request.POST, instance=post)
        if form.is_valid():
            form.save()

            # NOTE!
            get_related_posts.invalidate(post.id)

            return redirect(reverse('blog_post', args=(post.id,))
    else:
        form = BlogPostForm(instance=post)

    context = {
        'post': post,
        'form': form,
    }
    return render(request, 'edit_blogpost.html', context)

Now you're not repeating the code that constructs the cache key.

Getting fancy; hot cache

The above pattern, with or without django-cache-memoize, clears the cache when the blog post changes and then you basically wait till the next time the blog post is rendered, then the cache will be populated again.

A more "aggressive" pattern is to "heat the cache up" right after we've cleared it. A simple change is to call get_related_posts() again and let it cache. But to make sure it gets a fresh set of results we pass in the extra _refresh=True argument.


def update_blog_post(request, slug):
    post = BlogPost.objects.get(slug=slug)
    if request.method == 'POST':
        # BlogPostForm is a forms.ModelForm class for BlogPost
        form = BlogPostForm(request.POST, instance=post)
        if form.is_valid():
            form.save()

            # NOTE!
            # Refresh the cache here and now
            get_related_posts(post.id, _refresh=True)

            return redirect(reverse('blog_post', args=(post.id,))
    else:
        form = BlogPostForm(instance=post)

    context = {
        'post': post,
        'form': form,
    }
    return render(request, 'edit_blogpost.html', context)

What was the point of that?

The above example doesn't do a great job demonstrating how convenient it can be to use django-cache-memoize compared to "doing it manually". If your code base is peppered with lots of little blocks where you construct a cache key, check the cache, fall back on re-generation and write to cache again; then it can really add up to take away all of that mess and just use a decorator on anything that can be memoized.

Probably the biggest benefit with moving the cacheable functionality into its own function and decorating it is that all that hassle code with creating safe and unique cache keys is all in one place. You won't be violating the Don't Repeat Yourself principle. This becomes especially important once the cache keys that need to be constructed are getting complex and needs care.

Ultimately if you're able, your code will be free of various cache.set and cache.get code and yet a bunch of cacheable stuff gets cached nicely.

Why not use a regular @memoize or @functools.lru_cache?

The major difference between something like https://pypi.python.org/pypi/memoize/ and django-cache-memoize is that django-cache-memoize uses django.core.cache.cache which is a global state store (most likely backed by Redis or Memcached). If you use one of the other memoization solutions they'll be in-memory. Meaning, if your production code runs Gunicorn or uWSGI with, say, 8 workers then you'll have 8 copies of the same cache store. So if you're trying to protect an expensive function with @functools.lru_cache it will, worst case, be a cache miss 8 times on 8 different requests.