Filtered by JavaScript, Python

Page 18

Reset

Even more aggressively trying to preload your next page load

January 22, 2018
2 comments Web development, JavaScript

In 2014 I tried out an experiment to "Aggressively prefetching everything you might click". It was received with mixed reviews. Today, 4 years later, I stand by that experiment/solution and I even like it so much that I've decided to extend it.

How it works

The gist of the solution is that if you mouse hover over an internal link, with a 200ms delay, an XHR request is made to that URL as a simple GET. Suppose the XHR finishes loading in, say 300ms, and you eventually click the link, by the time it tries to load it, it loads it straight from your browser cache. You get that "instant load" feel and it makes navigating the site more enjoyable. Suppose that you're really fast with your mouse/trackpad and you click the link faster than 500ms (but slower than 200ms) the XHR request gets automatically cancelled by the browser. When your browser loads the new page, it basically has to start from scratch. No harm done. Just not as fast.

Sure, there is a chance that you hover over a link, and stay hovering for more than 200ms but then decide to not click on it. Then the XHR preload was a waste of resources.
But!! If you even have a mouse cursor, the chances that you're on a WiFi connected laptop.

None of this "kicks in" when you're on a mobile device. The onMouseOver event won't trigger. And, I dare to say that only on mobile devices does it strongly matter to reduce the stuff the client has to download. So what's the harm of forcing your laptop to download a couple of extra kilobytes? If you hover over the link, the chances are, after all, that you will click the link.

Even more aggressive

Today I decided to step it up even more. Now, after the HTML has been downloaded, the HTML downloaded is scanned with a regular expression for image URLs that sit on my CDN (where I host all images with far-future cache headers). The first 5 image URLs are preloaded so that when you eventually make that link click, not only is the page load instant, but most images are too.

What do you think? Too aggressive or genius?

Before hovering
Before hovering over the "About" link

After hovering
After hovering over the "About" link

Now, if I go ahead and make the click, the HTML load will be instant and the first 3 images will be instant too.

Show me the code!

It ain't pretty but it works: prefetcher.js

Yes, it's jQuery and I'm OK with that. Yes, the CDN domain name is hardcoded and if this was a work project I'd never do that. Heck, the ultimate reason I'm blogging about this is ultimately to share/teach. When you build something similar you can do it more robustly.

minimalcss 0.6.2 now strips all unused font faces

January 22, 2018
0 comments Web development, JavaScript, Node

minimalcss is a Node API and cli app to analyze the minimal CSS needed for initial load. One of it's killer features is that all CSS parsing is done the "proper way". Meaning, it's reduced down to an AST that can be iterated over, mutated and serialized back to CSS as a string.

Thanks to this, together with my contributors @stereobooster and @lahmatiy, minimalcss can now figure out which @font-face rules are redundant and can be "safely" removed. It can make a big difference on web performance. Either because it prevents expensive network requests of downloading some https://fonts.gstatic.com/s/lato/v14/hash.woff2 or downloading base64 encoded fonts.

For example, this very blog uses Semantic UI which is a wonderful CSS framework. But it's quite expensive and contains a bunch of base64 encoded fonts. The Ratings module uses a @font-face rule that weighes about 15KB.

Sure, you don't have to download and insert semanticui.min.css in your HTML but it's just sooo convenient. Especially when there's tools like minimalcss that allows you to be "lazy" but get that perfect first load web performance thing.
So, the CSS when doing a search looks like this:

Unoptimized
126KB of CSS (gzipped) transferred and 827KB of CSS parsed.

Let's run this through minimalcss instead:

$ minimalcss.js --verbose -o /tmp/peterbe.search.css "https://www.peterbe.com/search?q=searching+for+something"
$ ls -lh /tmp/peterbe.search.css
-rw-r--r--  1 peterbe  wheel    27K Jan 22 09:59 /tmp/peterbe.search.css
$ head -n 14 /tmp/peterbe.search.css
/*
Generated 2018-01-22T14:59:05.871Z by minimalcss.
Took 4.43 seconds to generate 26.85 KB of CSS.
Based on 3 stylesheets totalling 827.01 KB.
Options: {
  "urls": [
    "https://www.peterbe.com/search?q=searching+for+something"
  ],
  "debug": false,
  "loadimages": false,
  "withoutjavascript": false,
  "viewport": null
}
*/

And let's simulate it being gzipped:

$ gzip /tmp/peterbe.search.css
$ ls -lh /tmp/peterbe.search.css.gz
-rw-r--r--  1 peterbe  wheel   6.0K Jan 22 09:59 /tmp/peterbe.search.css.gz

Wow! Instead of downloading 27KB you only need 6KB. CSS parsing isn't as expensive as JavaScript parsing but it's nevertheless a saving of 827KB - 27KB = 800KB of CSS for the browser to not have to worry about. That's awesome!

By the way, the produced minimal CSS contains a lot of license preamble as left over from the fact that the semanticui.min.css is made up of components. See the gist itself.
Out of the total size of 27KB (uncompressed) 8KB is just the license preambles. minimalcss does not attempt to touch that when it minifies but you could easily add your own little tooling to re-write it, since there's a lot of repetition and save another ~7KB. However, all that repetition compresses well so it might not be worth it.

Conditional aggregation in Django 2.0

January 12, 2018
4 comments Python, Django, PostgreSQL

Django 2.0 came out a couple of weeks ago. It now supports "conditional aggregation" which is SQL standard I didn't even know about.

Before

So I have a Django app which has an endpoint that generates some human-friendly stats about the number of uploads (and their total size) in various different time intervals.

First of all, this is how it set up the time intervals:


today = timezone.now()
start_today = today.replace(hour=0, minute=0, second=0)
start_yesterday = start_today - datetime.timedelta(days=1)
start_this_month = today.replace(day=1)
start_this_year = start_this_month.replace(month=1)

And then, for each of these, there's a little function that returns a dict for each time interval:


def count_and_size(qs, start, end):
    sub_qs = qs.filter(created_at__gte=start, created_at__lt=end)
    return {
        'count': sub_qs.count(),
        'total_size': sub_qs.aggregate(size=Sum('size'))['size'],
}

numbers['uploads'] = {
    'today': count_and_size(upload_qs, start_today, today),
    'yesterday': count_and_size(upload_qs, start_yesterday, start_today),
    'this_month': count_and_size(upload_qs, start_this_month, today),
    'this_year': count_and_size(upload_qs, start_this_year, today),
}

What you get is exactly 2 x 4 = 8 queries. One COUNT and one SUM for each time interval. E.g.

SELECT SUM("upload_upload"."size") AS "size" 
FROM "upload_upload" 
WHERE ("upload_upload"."created_at" >= ...

SELECT COUNT(*) AS "__count" 
FROM "upload_upload" 
WHERE ("upload_upload"."created_at" >= ...

...6 more queries...

Middle

Oops. I think this code comes from a slightly rushed job. We can do the COUNT and the SUM at the same time for each query.


# New, improved count_and_size() function!
def count_and_size(qs, start, end):
    sub_qs = qs.filter(created_at__gte=start, created_at__lt=end)
    return sub_qs.aggregate(
        count=Count('id'),
        total_size=Sum('size'),
    )

numbers['uploads'] = {
    'today': count_and_size(upload_qs, start_today, today),
    'yesterday': count_and_size(upload_qs, start_yesterday, start_today),
    'this_month': count_and_size(upload_qs, start_this_month, today),
    'this_year': count_and_size(upload_qs, start_this_year, today),
}

Much better, now there's only one query per time bucket. So 4 queries in total. E.g.

SELECT COUNT("upload_upload"."id") AS "count", SUM("upload_upload"."size") AS "total_size" 
FROM "upload_upload" 
WHERE ("upload_upload"."created_at" >= ...

...3 more queries...

After

But we can do better than that! Instead, we use conditional aggregation. The syntax gets a bit hairy because there's so many keyword arguments, but I hope I've indented it nicely so it's easy to see how it works:


def make_q(start, end):
    return Q(created_at__gte=start, created_at__lt=end)

q_today = make_q(start_today, today)
q_yesterday = make_q(start_yesterday, start_today)
q_this_month = make_q(start_this_month, today)
q_this_year = make_q(start_this_year, today)

aggregates = upload_qs.aggregate(
    today_count=Count('pk', filter=q_today),
    today_total_size=Sum('size', filter=q_today),

    yesterday_count=Count('pk', filter=q_yesterday),
    yesterday_total_size=Sum('size', filter=q_yesterday),

    this_month_count=Count('pk', filter=q_this_month),
    this_month_total_size=Sum('size', filter=q_this_month),

    this_year_count=Count('pk', filter=q_this_year),
    this_year_total_size=Sum('size', filter=q_this_year),
)
numbers['uploads'] = {
    'today': {
        'count': aggregates['today_count'],
        'total_size': aggregates['today_total_size'],
    },
    'yesterday': {
        'count': aggregates['yesterday_count'],
        'total_size': aggregates['yesterday_total_size'],
    },
    'this_month': {
        'count': aggregates['this_month_count'],
        'total_size': aggregates['this_month_total_size'],
    },
    'this_year': {
        'count': aggregates['this_year_count'],
        'total_size': aggregates['this_year_total_size'],
    },
}

Voila! One single query to get all those pieces of data.
The SQL sent to PostgreSQL looks something like this:

SELECT 
  COUNT("upload_upload"."id") FILTER (WHERE ("upload_upload"."created_at" >= ...)) AS "today_count", 
  SUM("upload_upload"."size") FILTER (WHERE ("upload_upload"."created_at" >= ...)) AS "today_total_size", 

  COUNT("upload_upload"."id") FILTER (WHERE ("upload_upload"."created_at" >= ...)) AS "yesterday_count", 
  SUM("upload_upload"."size") FILTER (WHERE ("upload_upload"."created_at" >= ...)) AS "yesterday_total_size", 

  ...

FROM "upload_upload";

Is this the best thing to do? I'm starting to have my doubts.

Watch Out!

When I take this now 1 monster query for a spin with an EXPLAIN ANALYZE prefix I notice something worrying!

QUERY PLAN
-------------------------------------------------------------------------------------------------------------------
 Aggregate  (cost=74.33..74.34 rows=1 width=16) (actual time=0.587..0.587 rows=1 loops=1)
   ->  Seq Scan on upload_upload  (cost=0.00..62.13 rows=813 width=16) (actual time=0.012..0.210 rows=813 loops=1)
 Planning time: 0.427 ms
 Execution time: 0.674 ms
(4 rows)

A sequential scan! That's terrible. The created_at column is indexed in a BTREE so why can't it use the index.

The short answer is: I don't know!
I've uploaded a reduced, but still complete, example demonstrating this in a gist. It's very similar to the example in the stackoverflow question I asked.

So what did I do? I went back to the "middle" solution. One SELECT query per time bucket. So 4 queries in total, but at least all 4 is able to use an index.

Understanding Redis hash-max-ziplist-entries

January 8, 2018
2 comments Python, Redis

This is an advanced topic for people who do serious stuff in Redis. I need to do serious stuff in Redis so I'm trying to learn about the best way to store lots of keys with hash maps.

It seems that this article by Salvatore Sanfilippo (creator of Redis) himself seems to be a much cited article for this topic. If you haven't read it, the gist is that Redis can employ some clever optimizations for storing hash maps in a very memory efficient way instead of storing each key-value separately.

"Hashes, Lists, Sets composed of just integers, and Sorted Sets, when smaller than a given number of elements, and up to a maximum element size, are encoded in a very memory efficient way that uses up to 10 times less memory (with 5 time less memory used being the average saving)"

This efficient storage optimization is called a ziplist.

Truncated! Read the rest by clicking the link below.

Display current React version

January 7, 2018
1 comment JavaScript, React

Usually you know what version of React your app is using by opening the package.json, or poking around in node_modules/react/index.js. But perhaps there are many packaging abstractions in between your command line and the server. Especially if you have a continous integration server that builds your static assets and if that CI uses caching. It might get scary.

If you really want to print out what version of React is rendering your app here's one way to do that:


import React from 'react'

class Introspection extends React.Component {
  render() {
    return <div>
      Currently using React {React.version}
    </div>
  }
}

Suppose that you want this display to depend on the app being in dev or prod mode:


import React from 'react'

class Introspection extends React.Component {
  render() {
    return <div>
      {
        process.env.NODE_ENV === 'development' ?
        <p>Currently using React {React.version}</p> : null
      }
    </div>
  }
}

Note that there's no need to import process.

See this CodeSandbox snippet for a live example.

Whatsdeployed facelift

January 5, 2018
0 comments Python, Web development, Mozilla, Docker

tl;dr; Whatsdeployed.io is an impressively simple web app to help web developers and web ops people quickly see what GitHub commits have made it into your Dev, Stage or Prod environment. Today it got a facelift.

The code is now more than 5 years old and has served me well. It's weird to talk too positively about the app because I actually wrote it but because it's so simple in terms of design and effort it feels less personal to talk about it.

Here's what's in the facelift

  • Upgraded to Bootstrap 4.
  • Instead of relying on downloading a heavy Glyphicon web font, just to display a single checkmark, that's now a simple image.
  • Ability to use a GitHub developer personal token to avoid rate limitations on GitHub's API.
  • The first lookup to get all commits is now done via the Flask app to use my auth token to avoid the rate limit.
  • Much better error handling if any of the underlying requests.get() that the Flask app does, fails. Also includes which URL it failed on.
  • Basic validation to prevent submitting the main form without typing anything in.
  • You can hack on it with Docker. Thanks @willkg.
  • Improved the code that extracts Bugzilla bug numbers out of commit messages. Thanks @edmorely.
  • Refreshed screenshots in the README.md
  • A brand new introduction text on the home page for people who end up on the site not knowing what it is.
  • If any XHR errors happen figuring out the "culprits", you now get a pretty error describing this instead of swallowing it all.

Please let me know if there's anything broken or missing.

Fastest way to uniquify a list in Python >=3.6

December 23, 2017
7 comments Python

This is an update to a old blog post from 2006 called Fastest way to uniquify a list in Python. But this, time for Python 3.6. Why, because Python 3.6 preserves the order when inserting keys to a dictionary. How, because the way dicts are implemented in 3.6, the way it does that is different and as an implementation detail the order gets preserved. Then, in Python 3.7, which isn't released at the time of writing, that order preserving is guaranteed.

Anyway, Raymond Hettinger just shared a neat little way to uniqify a list. I thought I'd update my old post from 2006 to add list(dict.fromkeys('abracadabra')).

Functions

Reminder, there are two ways to uniqify a list. Order preserving and not order preserving. For example, the unique letters in peter is p, e, t, r in their "original order". As opposed to t, e, p, r.


def f1(seq):  # Raymond Hettinger
    hash_ = {}
    [hash_.__setitem__(x, 1) for x in seq]
    return hash_.keys()

def f3(seq):
    # Not order preserving
    keys = {}
    for e in seq:
        keys[e] = 1
    return keys.keys()

def f5(seq, idfun=None):  # Alex Martelli ******* order preserving
    if idfun is None:
        def idfun(x): return x
    seen = {}
    result = []
    for item in seq:
        marker = idfun(item)
        # in old Python versions:
        # if seen.has_key(marker)
        # but in new ones:
        if marker in seen:
            continue
        seen[marker] = 1
        result.append(item)
    return result

def f5b(seq, idfun=None):  # Alex Martelli ******* order preserving
    if idfun is None:
        def idfun(x): return x
    seen = {}
    result = []
    for item in seq:
        marker = idfun(item)
        # in old Python versions:
        # if seen.has_key(marker)
        # but in new ones:
        if marker not in seen:
            seen[marker] = 1
            result.append(item)

    return result

def f7(seq):
    # Not order preserving
    return list(set(seq))

def f8(seq):  # Dave Kirby
    # Order preserving
    seen = set()
    return [x for x in seq if x not in seen and not seen.add(x)]

def f9(seq):
    # Not order preserving, even in Py >=3.6
    return {}.fromkeys(seq).keys()

def f10(seq, idfun=None):  # Andrew Dalke
    # Order preserving
    return list(_f10(seq, idfun))

def _f10(seq, idfun=None):
    seen = set()
    if idfun is None:
        for x in seq:
            if x in seen:
                continue
            seen.add(x)
            yield x
    else:
        for x in seq:
            x = idfun(x)
            if x in seen:
                continue
            seen.add(x)
            yield x

def f11(seq):  # f10 but simpler
    # Order preserving
    return list(_f10(seq))

def f12(seq):
    # Raymond Hettinger
    # https://twitter.com/raymondh/status/944125570534621185
    return list(dict.fromkeys(seq))

Results

FUNCTION        ORDER PRESERVING     MEAN       MEDIAN
f12             yes                  111.0      112.2
f8              yes                  266.3      266.4
f10             yes                  304.0      299.1
f11             yes                  314.3      312.9
f5              yes                  486.8      479.7
f5b             yes                  494.7      498.0
f7              no                   95.8       95.1
f9              no                   100.8      100.9
f3              no                   143.7      142.2
f1              no                   406.4      408.4

Not order preserving

Order preserving

Conclusion

The fastest way to uniqify a list of hashable objects (basically immutable things) is:


list(set(seq))

And the fastest way, if the order is important is:


list(dict.fromkeys(seq))

Now we know.

CSS selector simplifier regular expression in JavaScript

December 20, 2017
0 comments Web development, JavaScript

The Problem

I'm working on a project where it needs to evaluate CSS as a string. Basically, it compares CSS selectors against a DOM to see if the CSS selector is used in the DOM.

But CSS has pseudo classes. A common one a lot of people are familiar with is: a:hover { text-decoration: crazy }. So that :hover part is not relevant when evaluating the CSS selector against the DOM. So you chop off the :hover bit and is left with a which you can then look for in the DOM.

But there are some tricks and make this less trivial. Consider, this from Bootstrap 3


a[href^="#"]:after,
a[href^="javascript:"]:after {
    content: "";
}

In this case we can't simply split on a : character.

Another non-trivial example comes from Semantic UI:


.ui[class*="4:3"].embed {
  padding-bottom: 75%;
}
.ui[class*="16:9"].embed {
  padding-bottom: 56.25%;
}
.ui[class*="21:9"].embed {
  padding-bottom: 42.85714286%;
}

Basically, if you just split the selectors (e.g. a:hover) on the first : and keep everything to the left (e.g. a), with these non-trivial CSS selectors you'd get this:

a[href^="javascript

and

.ui[class*="4

etc. These CSS selectors will fail. Both Firefox and Chrome seem to swallow any errors but cheerio will raise a SyntaxError and not just that but the problem is that the CSS selector is just the wrong one to look for.

The Solution

The solution has to be to split by the : character when it's not between two quotation marks.

This Stackoverflow post helped me with the regex. It was trivial to extend now my final solution looks like this:


/**
 * Reduce a CSS selector to be without any pseudo class parts.
 * For example, from 'a:hover' return 'a'. And from 'input::-moz-focus-inner'
 * to 'input'.
 * Also, more advanced ones like 'a[href^="javascript:"]:after' to
 * 'a[href^="javascript:"]'.
 * The last example works too if the input was 'a[href^='javascript:']:after'
 * instead (using ' instead of ").
 *
 * @param {string} selector
 * @return {string}
 */
const reduceCSSSelector = selector => {
  return selector.split(
    /:(?=([^"'\\]*(\\.|["']([^"'\\]*\\.)*[^"'\\]*['"]))*[^"']*$)/g
  )[0]
}

Extra; About regexes

I've been coding for about 20 years and would like to think I know my way around writing regular expressions in various languages. However, I'm also eager to admit that I often fumble and rely on googling/stackoverflow more than actually understanding what the heck I'm doing. That's why I found this comment so amusing:

Thank you! Didn't think it was possible. I understand 100% of the theory, about 60% of the regex, and I'm down to 0% when it comes to writing it on my own. Oh, well, maybe one of these days. – Azmisov

Msgpack vs JSON (with gzip)

December 19, 2017
17 comments Python, Web development

tl;dr; I see no reason worth switching to Msgpack instead of good old JSON.

I was curious, how much more efficient is Msgpack at packing a bunch of data into a file I can emit from a web service.

In this experiment I take a massive JSON file that is used in a single-page-app I worked on. If I download the file locally as a .json file, the file is 2.1MB.

Converting it to Msgpack:


>>> import json, msgpack
>>> with open('events.json') as f:
...   events=json.load(f)
...
>>> len(events)
3
>>> events.keys()
dict_keys(['max_modified', 'events', 'urls'])
>>> with open('events.msgpack', 'wb') as f:
...   f.write(msgpack.packb(events))
...
1880266

events.json vs events.msgpack
Now, let's compared the two file formats, as seen on disk:

▶ ls -lh events*
-rw-r--r--  1 peterbe  wheel   2.1M Dec 19 10:16 events.json
-rw-r--r--  1 peterbe  wheel   1.8M Dec 19 10:19 events.msgpack

But! How well does it compress?

More common than not your web server can return content encoded in Gzip as content-encoding: gzip. So, let's compare that:

▶ gzip events.json ; gzip events.msgpack
▶ ls -l events*
-rw-r--r--  1 peterbe  wheel  304416 Dec 19 10:16 events.json.gz
-rw-r--r--  1 peterbe  wheel  305905 Dec 19 10:19 events.msgpack.gz

Msgpack vs JSON (with gzip)

Oh my! When you gzip the files the .json file ultimately becomes smaller. By a whopping 0.5%!

What about speed?

First let's open the files a bunch of times and see how long it takes to unpack:


def f1():
    with open('events.json') as f:
        s = f.read()
    t0 = time.time()
    events = json.loads(s)
    t1 = time.time()
    assert len(events['events']) == 4365
    return t1 - t0


def f2():
    with open('events.msgpack', 'rb') as f:
        s = f.read()
    t0 = time.time()
    events = msgpack.unpackb(s, encoding='utf-8')
    t1 = time.time()
    assert len(events['events']) == 4365
    return t1 - t0


def f3():
    with open('events.json') as f:
        s = f.read()
    t0 = time.time()
    events = ujson.loads(s)
    t1 = time.time()
    assert len(events['events']) == 4365
    return t1 - t0

(Note that the timing is around the json.loads() etc without measuring how long it takes to get the files to strings)

json.loads() vs msgpack.unpack() vs. ujson.loads()
Result (using Python 3.6.1): All about the same.

FUNCTION: f1 Used 56 times
    MEDIAN 30.509352684020996
    MEAN   31.09178798539298
    STDEV  3.5620914333233595
FUNCTION: f2 Used 68 times
    MEDIAN 27.882099151611328
    MEAN   28.704492484821994
    STDEV  3.353800228776872
FUNCTION: f3 Used 76 times
    MEDIAN 27.746915817260742
    MEAN   27.920340236864593
    STDEV  2.21554251130519

Same benchmark using PyPy 3.5.3, but skipping the f3() which uses ujson:

FUNCTION: f1 Used 99 times
    MEDIAN 20.905017852783203
    MEAN   22.13949386519615
    STDEV  5.142071370453135
FUNCTION: f2 Used 101 times
    MEDIAN 36.96393966674805
    MEAN   40.54664857316725
    STDEV  17.833577642246738

Dicussion and conclusion

One of the benefits of Msgpack is that it can used for streaming. "Streaming unpacking" as they call it. But, to be honest, I've never used it. That can useful when you have structured data trickling in and you don't want to wait for it all before using the data.

Another cool feature Msgpack has is ability to encode custom types. E.g. datetime.datetime. Like bson can do. With JSON you have to, for datetime objects do string conversions back and forth and the formats are never perfectly predictable so you kinda have to control both ends.

But beyond some feature differences, it seems that JSON compressed just as well as Msgpack when Gzipped. And unlike Msgpack JSON is not binary so it's easy to poke around with any tool. And decompressing JSON is just as fast. Almost. But if you need to squeeze out a couple of extra free milliseconds from your JSON files you can use ujson.

Conclusion; JSON is fine. It's bigger but if you're going to Gzip anyway, it's just as small as Msgpack.

Bonus! BSON

Another binary encoding format that supports custom types is BSON. This one is a pure Python implementation. BSON is used by MongoDB but this bson module is not what PyMongo uses.

Size comparison:

▶ ls -l events*son
-rw-r--r--  1 peterbe  wheel  2315798 Dec 19 11:07 events.bson
-rw-r--r--  1 peterbe  wheel  2171439 Dec 19 10:16 events.json

So it's 7% larger than JSON uncompressed.

▶ ls -l events*son.gz
-rw-r--r--  1 peterbe  wheel  341595 Dec 19 11:07 events.bson.gz
-rw-r--r--  1 peterbe  wheel  304416 Dec 19 10:16 events.json.gz

Meaning it's 12% fatter than JSON when Gzipped.

Doing a quick benchmark with this:


def f4():
    with open('events.bson', 'rb') as f:
        s = f.read()
    t0 = time.time()
    events = bson.loads(s)
    t1 = time.time()
    assert len(events['events']) == 4365
    return t1 - t0

Compared to the original f1() function:

FUNCTION: f1 Used 106 times
    MEDIAN 29.58393096923828
    MEAN   30.289863640407347
    STDEV  3.4766612593557173
FUNCTION: f4 Used 94 times
    MEDIAN 231.00042343139648
    MEAN   231.40889786659403
    STDEV  8.947746458066405

In other words, bson is about 600% slower than json.

This blog post was supposed to be about how well the individual formats size up against each other on disk but it certainly would be interesting to do a speed benchmark comparing Msgpack and JSON (and maybe BSON) where you have a bunch of datetimes or decimal.Decimal objects and see if the difference is favoring the binary formats.

How's My WiFi?

December 8, 2017
2 comments macOS, JavaScript, Node

This was one of those late-evening-after-the-kids-are-asleep project. Followed by some next-morning-sober-readme-fixes-and-npmjs-paperwork.

It's a little Node script that will open https://fast.com with puppeteer, and record, using document.querySelector('#speed-value') what my current Internet speed is according to that app. It currently only works on OSX but it should be easy to fix for someone handy on Linux or Windows.

You can either run it just once and get a readout. That's basically as useful as opening fast.com in a new browser tab.
The other way is to run it in a loop howsmywifi --loop and sit and watch as it tries to figure out what your Internet speed is after multiple measurements.

Screenshot

That's it!

The whole point of this was for me to get an understanding of what my Internet speed is and if I'm being screwed by Comcast. The measurements are very erratic and they might sporadically depend on channel noise on the WiFi or just packet crowding when other devices is overcrowding the pipes with heavy downloads such as video chatting or watching movies or whatever.

I've seen 98 Mbps with my iPhone on this network. Not so much today.

And Screenshots!

As a bonus, it will take a screenshot (if you pass the --screenshots flag) of the fast.com page each time it has successfully measured. Not sure what to do with this. If you have ideas, let me know.